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The number of terms which should be included for the computation of the electrophoretic effect in the diffusion of a single 
electrolyte is discussed in the light of the principle of linear superposition of ionic fields. I t is shown that both first- and 
second-order terms in the potential are mathematically justified for symmetrical valence-types, but that only the first-order 
term is admissible for unsymmetrical types. This point is emphasized by developing an expression for the »'th-order 
term in the potential arising from a Boltzmann distribution law: computation of terms up to the fifth order then shows 
that for 1:1 electrolytes the electrophoretic terms converge sharply after the second-order term, while for unsymmetrical 
electrolytes the series converge slowly or diverge. A "self-consistent" equation for the diffusion coefficient is obtained by 
taking two electrophoretic terms for 1:1 electrolytes, but only one for other types. I t accounts satisfactorily for the ob­
served diffusion coefficients of dilute calcium chloride solutions, which deviate markedly from the Onsager-Fuoss theory. 
The cases of aqueous lithium, calcium and lanthanum chlorides at 25° are considered in detail. 

The theory developed by Onsager and Fuoss1 re­
sults in an expression for the diffusion coefficient D 
of a dilute electrolyte solution, which may con­
veniently be written as 

D = (1 + c d In JU /dc)(D<> + A1 + A2) (1) 

Here Ai and A2 are small concentration-dependent 
corrections to the Nernst limiting value £>°, and 
originate in the electrophoretic effect, i.e., the trans­
fer of velocity from one ion to another via the sol­
vent. On working through the theory as presented 
in references (1), one finds that A1 and A2 arise, re­
spectively, from the first and second terms of the 
expansion of an exponential function 
m' - fix = n-d-ziet/kT + (\/2\)(z^/kTY -

( 1 / 3 0 0 ^ / i r ) ' + ] (2) 
A closely related expansion occurs in the derivation 
of the Debye-Hiickel equation 3 for the potential \p 
at a distance r from a chosen central ion of valency Z) 

<l> = z\e e«" e~*> 
e 1 + w r 

(3) 

The expansion involved in the derivation of equa­
tion 3 is that for the time-averaged charge density 
p at the point where the potential is \j/, viz. 

P = Y n\Z\ee-z\e^/kT (4) 

Equation 4 is combined with the Poisson equation 
to obtain the differential equation for the poten­
tial. In order that this differential equation should 
be linear in ^, (a condition required by the principle 
of linear superposition of ionic fields, which de­
mands that p be proportional to ip), the exponen­
tials in equation 4 are expanded and terms in 
higher powers of \p than the first are rejected, giv­
ing after introducing the condition of electrical 
neutrality the result 

p Y1 mziVt/kT (5) 
i 

This means in effect that the Boltzmann distribu­
tion has to be abandoned in favor of a linear distri­
bution law 

m' = m(l - zie+fkT) (6) 

since the Boltzmann distribution and the Poisson 
equation are fundamentally incompatible.2 

(1) L. Onsager and R. M. Fuoss, J. Pkys. Chem., 36, 2689 (1932). 
See also H. S. Harned and B. B. Owen, "The Physical Chemistry of 
Electrolytic Solutions," Reinhold Publ. Corp., New York, N. Y., 
1943 and 1950. 

(2) See R. H. Fowler and E. A. Guggenheim, "Statistical Thermo­
dynamics," Cambridge University Press, 1952, Ch. IX. 

List of Symbols and Definitions 

D = differential diffusion coefficient at concn. c, in cm.2 

sec . - 1 

D" = Nernst limiting value of D at infinite dilution 
_ »i + Vi RT „ „ 0 

An, nth order electrophoretic correction to D (eqn. 1 
and 8) 

vi, vs, numbers of cations and anions, respectively, formed 
by 1 "molecule" of electrolyte 

*i, 22, algebraic valencies of cation and anion, respectively 
t\, t\, transference numbers of cation and anion, respec­

tively, at infinite dilution 
A0, limiting equivalent conductance of electrolyte 
R, molar gas constant = 8.314 joule mole - 1 deg . - 1 

T, absolute temperature 
c, concentration of electrolyte in moles/liter 
y±, mean molar activity coefficient 
»i, number of ions of species i in gross unit volume 
n\', number of ions of species i in microscopic unit 

volume at distance r from a particular "central" 
ion 

e, charge of proton = 4.803 X 10 - 1 0 e.s. units 
^, potential at distance r from central ion 
k, Boltzmann's constant = 1.380 X 10 - 1 6 erg deg . - 1 

molecule - 1 

Tl, viscosity of solvent = 0.008937 poise for water at 
25° 

F, Faraday = 96493 coulombs/g. equiv. 
e, dielectric constant of solvent = 78.54 for water at 

25° 
K, quantity in Debye-Hiickel theory, given by 

K2 = [45riVe2/( 1000<=fer)]c(*iz? + vt4) 
N, Avogadro number = 6.024 X 1023 

a, mean distance of closest approach of ions, in cm. 
a, mean distance of closest approach, in A. 
Ei(x), exponential integral function, here defined as 

e - »y - 1 dy (This integral is called — E-,(— x) 

in Jahnke and Emde's Tables, reference 4.) 
Sn(Ka), nth order functions of {xa) given by equation 10 
0n(to), wth order functions of (xa) given by equation 11 
Fn(Ka), abbreviation for quantity in square bracket 

eq. 12 

s: 
of 

There is however an important special case 
where the Boltzmann distribution is more nearly 
applicable: For a single symmetrical electrolyte 
where Z1 = — z2 and Wi = W2, the expansion of (4) 
becomes 
P = O - 2»iZi2eV/Ar + 0 - niZie(zie^/kTy/, + 0 + • • • 

(7) 

in which all terms in even powers of ^ vanish. In 
this case therefore the Boltzmann distribution is 
represented by equation 5 without errors of order 
^2, the approximation being in terms of order ^8 

only. One would therefore expect the expression 
(3) for the potential to be most satisfactory for 
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symmetrical electrolytes; and especially for 1:1 
electrolytes, since 2:2 electrolytes and higher types 
are affected by ion-pair formation. Furthermore, 
there is no inconsistency involved in taking the 
series (2) as far as the second term when calculating 
the electrophoretic effect for 1:1 electrolytes. For 
unsymmetrical electrolytes however there is a def­
inite mathematical inconsistency in accepting the 
square term in series (2), and then using for ^ the 
expression (3) obtained by neglecting square terms. 
This was recognized by Onsager and Fuoss,1 who 
commented that their expressions for Ai and A2 
were scarcely changed by using the expressions for 
the potential obtained by La Mer3 and co-workers, 
in which higher powers were considered. This is 
however not entirely relevant, since the La Mer 
formulas have been criticized2 as inconsistent with 
the superposition principle. The point is rather 
that in the general case only the first-order electro­
phoretic term A1 is mathematically consistent with 
the formula adopted for the charge density and 
with expression (3) for the potential. In the case 
of single 1:1 electrolytes however there is logical 
justification for including the second-order electro­
phoretic correction A2 in the diffusion problem, 
since formulas 1, 3 and 5 are then all self-consistent 
as far as square terms in the potential. I t will now 
be shown, by evaluating higher electrophoretic 
contributions from the higher terms in series (2), 
that for 1:1 electrolytes the series A1 + A2 + • • • 
converges sharply after A2, the higher terms being 
negligible, but that for unsymmetrical electrolytes 
such convergence does not occur. It follows that 
there is no justification, either logical or numerical, 
for accepting the second-order electrophoretic 
term for unsymmetrical electrolytes, though for 
1:1 electrolytes its acceptance is not only logically 
justifiable and experimentally necessary, but is also 
sufficient to ensure convergence. For unsymme­
trical electrolytes the first-order term, which alone 
is justifiable, also gives results corresponding bet­
ter to the experimental observations than are ob­
tained by including A2 and higher terms. 

Evaluation of the Higher Order Electrophoretic 
Corrections.—This task turns out to be less dif­
ficult than might be imagined from an examination 
of the usual expressions for A1 and A2. One finds, 
by a straightforward generalization of the proced­
ure by which A1 and A2 were obtained,1 that the nth. 
electrophoretic correction, An, arising from the rath 
term of the series in equation (2), is given by 

1.54« X 10 7RT ( - 1) 

O)2 r X 

1_ (zft0, + ZjHT)2 

(8) 

The factors in equation 8 have been arranged in 
three groups, each given on a separate line. The 
first group contains only physical constants and 
properties of the solvent; the second group is a 
function only of the dimensionless concentration-
dependent quantity (no); and the third group con-

(3) T. H. Gronwall, V. K. La Mer and K. Sandved, Physik. Z., 29, 
358 (1928). 

tains only specific characteristics of the ions, viz., 
their valences and transference numbers, and the 
"distance of closest approach" d. It should be 
noted that & in the third line is to be expressed in 
angstrom units; the compensating factor 10s" has 
been introduced into the first line. The second 
line appears to contain a"~2 in addition to func­
tions of (m) only, but this factor actually cancels 
with a similar one which appears upon evaluating 
the integral. The integral in the second line of (8) 
can be expressed in terms of the exponential inte­
gral function E\(x) = I e~yy~xdy, which is avail­
able in tables,4 and simple exponential functions. 
Successive values of the integral are given by 

•r »n—l dr = Sn(Ka) (9) 

where 

Si(Ka) = ; 
Ka 

S3(Ka) = e-3«> 

S2(Ka) = Ei(2Ka); 

3Ko£i(3«a); 

St(Ka) = e-*«(\ - 2KO) + 8(/ca)2£I(4ra); 
\ 2 

etc. 

The Sn for M > 2 are obtained by repeated integra­
tion by parts; the general expression is 

(—nxa) 
Sn(Ka) = <?-»*« 

Ln — 
( — UKa)2 

2 + (n 

(n - 2)(« - 3)(n - 4) 

- 2)(n - 3) 

+ ••• + 

( -TiKaY 

+ 
(-nm)"-* 
(n - 2)! 

( . - 2)! a ( — > ( 1 0 ) 

there being (re — 2) terms in the series enclosed in 
square brackets in (10). The concentration-de­
pendent factors in the second line of equation (8) 
may therefore be written 

V a l u e s 

4>n(Ka) = (KO)2 

of (J)n(KO, 

U + Ka) 
Sa(Ka) 

) a t r o u n d v a l u e s of (KO) for 
a r e g iven in T a b l e I . 

VALUES 

KG 

O 
0.05 

.1 
o 

.3 

. 5 

. 7 
1.0 

OF THE 

100*i(««) 

0.000 
4.762 
9.091 

16.67 
2 3 . 0 8 

33.33 
41.18 
50.00 

TABLE I 

FUNCTION 

100*1 (ia) 

0.0000 
0.4566 
1.235 
2.911 
4.405 
6.628 
7.987 
9.032 

4>„(*a) AT 

O) 
100*1 Ota) 

0.0000 
0.1609 
0.4761 
1.166 
1.734 
2.425 
2.686 
2.678 

( H ) 

nup t o 5 

ROUND VALUES OF 

100*1 («o) 

0.0000 
.0884 
.2624 
.6192 
.876 

1.100 
1.096 
0.938 

100*s(«a) 

0.0000 
.0584 
.1693 
.3764 
.499 
. 552 
.491 
.37 

For the case of water as solvent at 25°, one finds 
on substituting the values of t), e, k, e and F (given 
in the list of symbols) that equation (8) reduces to 

An (-!)»[, 3.425 X 10" 
, (7.134)" 

n! ct>*(i<a)\ 

1 (z'itl + z^S)2 

(12) 

The quantity in the square bracket of (12) may be 
(4) E. Jahnke and F. Emde, "Tables of Functions," Dover Publica­

tions, N. Y., 1945. 
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abbreviated to Fn(Ka); values of this quantity at 
round (KG) are given in Table II, and are valid only 
for aqueous solutions at 25°. 

TABLE II 

VALUES OF THE QUANTITY Fn(Ka) FOR AQUEOUS SOLUTIONS 
AT 25° 

Ka 

0 
0.05 

.1 

.2 

.3 

.5 

.7 
1.0 

Fi(Ka) 
X 10« 

0 
1.163 
2.221 
4.072 
5.64 
8.14 

10.06 
12.22 

FS(KQ) 
X 10« 

0 
0.398 
1.076 
2.537 
3.839 
5.78 
6.96 
7,87 

Fs(Ka) 
X 10« 

0 
0.334 
0.987 
2.417 
3.595 
5.03 
5.57 
5.55 

Ft(Ka) 
X 10« 

0 
0.327 
0.970 
2.289 
3.238 
4.07 
4.05 
3.47 

Fi(«a) 
X 10« 

0 
0.308 
0.893 
1.985 
2.63 
2.91 
2.59 
1.95 

Thus the diffusion coefficient is now given by 
D = (1 + cdlny±/dc) X 

(£>° + A1 + A2 + ••• + A n +)-- - (13) 
where 

An = (-1)« ^ ^ (zM + aM)7<Jn (14) 

A glance across the rows of Table II shows that for 
a given (m) value, the quantity Fn(Ka) decreases 
only slowly with increasing n: it remains of the 
same order of magnitude for w up to 5. This means 
that responsibility for the early convergence of the 
series 2AM is thrown upon the factor (z^t\ + S2V1)

2/*!* 
in equation 14; if this decreases rapidly with in­
creasing n, convergence is assured. For 1:1 elec­
trolytes, the factor takes alternately the values 
(t°2 - t[)2/dn (odd n) and 1/&" (even n); and since a 
for most 1:1 electrolytes lies in the range 3 to 5, it 
follows that the factor &" in the denominator will 
mean that A3 and A4 are at least an order of magni­
tude smaller than Ai and A2, respectively. The 
original Onsager-Fuoss expression 1 is therefore 
adequate for 1:1 electrolytes. 

For higher valence type electrolytes however the 
position is quite different; it is easily seen that if 
the higher-valence ion present has valence 2, the 
factor (z*/2 + z2/J)2 w u l be approximately propor­
tional to z2n, the approximation improving as n in­
creases. Hence if z2 is greater than & (or not much 
smaller), the series 2A„ will converge only slowly, if 
at all, for small n values. Since for electrolytes 
of the 2:1 and 3:1 categories the & values usually 
lie in the range 4-7, it follows that early conver­
gence will not occur in these cases, and the Onsager-
Fuoss expression 1 will therefore fail. It is hardly 
justifiable to consider 2:2, 3:2 or 3:3 electrolytes, 
since these always show marked ion-pair formation 
effects which make the theory in its usual form inap­
plicable; but the same convergence troubles would 
clearly arise in these cases. I t is thus clear that 
there are sound theoretical reasons for the observa­
tions that the Onsager-Fuoss expression 1 is satisfac­
tory for potassium chloride,6 lithium chloride,6 and 
other 1:1 electrolytes in water at 25°, but that it 
fails for calcium chloride7 and lanthanum chloride.8 

(5) H. S. Harned and R. L. Nuttall, THIS JOURNAL, 69, 73B (1947). 
(6) H. S. Harned and C. L. Hildreth, ibid., 73, 650 (1951). 
(7) H. S. Harned and A. L. Levy, ibid., 71, 2781 (1949). 
(8) H. S. Harned and C. A. Blake, ibid., 73, 4255 (1951). 

These two last-named salts are the only poly­
valent ones for which both accurate diffusion co­
efficients and accurate values of the activity factor 
(1 + c d In y+/Ac) are available in dilute solutions. 
Some other cases where there is apparently a rea­
sonable degree of conformity with equation 1, e.g., 
sodium sulfate, do not in fact provide convincing 
evidence since the activity factor has to be ob­
tained by a long extrapolation from the region 
where reliable activity coefficients are available. 

Some numerical examples will now be discussed. 

(a) Lithium Chloride: 
Z1 = - s 2 = 1, t° = 1 - tl = 0.3364; & = 4.32; A» = 115.03 
Do = 1.3683 X 10 ~6 

A1 = - (0.3272 a/4.32)i?i(ico) = -0.0248F1(Ka) 
A2 = + (l/4.322)F2(*a) = +0.0536F2(Mz) 
A3 = - (0.3272 V4-323) F3(K0) = -0.00133F3(*a) 
A4 = + (1/4.324)F4(KO) = +0.00287F4(KO) 

The values of c corresponding to the round (KO) 
values are now calculated from the relation 0.3286 
&cl/* = Ka, which in this case gives c = 0.4963 
(KO) 2. We now obtain the An with the help of Table 
II, as shown in Table III. 

TABLE III 

ELECTROPHORETIC TERMS FOR LITHIUM CHLORIDE 
SOLUTIONS AT 25° 
Ai X Ai X A1 X At X 

Ka c 10« 10« 10« 10« 
0.05 0.00124 -0.0029 +0.0021 ... +0.0001 
.1 .00496 - .0055 + .0058 -0.0001 + .0003 
.3 .0447 - .0140 + .0260 - .0005 + .0009 

1.0 .4963 - .0303 + .0422 - .0007 + .0010 

This tabulation merely confirms the conclusion 
reached above, that the error involved in stopping 
at A2 is negligible, so that equation 1 is applicable. 

(b) Calcium Chloride: 
Z1 = 2, Zi = - 1 , t\ = 1 - tl = 0.4380, A» = 135.85, 

i = 4.73 
D" = 1.3364 X 10-6, c = 0.1380(«z)2 

Ka 

0.05 
.1 
.2 
.3 
.5 
.7 

1.0 

C 

0.00035 
.00138 
.00552 
.0124 
.0345 
.0676 
.1380 

A1 X 
10« 

- 0 . 0 0 5 8 
- .0110 
- .0203 
- .0281 
- .0405 
- .0500 
- .0608 

A2 X 
10« 

+ 0.0064 
+ .0173 
+ .0409 
+ .0619 
+ .0932 
+ .1122 
+ .1269 

A1 X 
10« 

-0 .0026 
- .0077 
- .0188 
- .0280 
- .0391 
- .0433 
- .0432 

A4 X 
10« 

+ 0.0029 
+ .0086 
+ .0203 
+ .0288 
+ .0362 
+ .0360 
+ .0308 

As X 
10« 

-0 .0020 
- .0058 
- .0129 
- .0171 
- .0189 
- .0168 
- .0127 

We see that the series SAn is converging very 
slowly, if at all. I t is therefore not surprising that 
the Onsager-Fuoss equation 1, which includes A1 
and A2 only, fails to give agreement with experi­
ment. However, we have remarked earlier that 
on grounds of self-consistency only the first-order 
term Ai is acceptable for unsymmetrical electro­
lytes; we shall therefore make a comparison be­
tween theory and experiment using this term only, 
i.e., using the formula 

£> = (1 + cdlny±/dc)(A> + A1) (15) 
The factor (1 + c d In y^/dc) can be computed 
from the activity coefficient data of McLeod and 
Gordon,9 and takes the values 0.949, 0.935, 0.922, 
0.911, 0.901 and 0.892 at Vc = 0.03,0.04,0.05,0.06, 
0.07, and 0.08, respectively. Using these values 

(9) H. G. McLeod and A. R. Gordon, T H I S JOURNAL, 68, 58 (1946). 
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in equation (15) we obtain the calculated D values 
shown by the continuous curve in Fig. 1; the 
measured values7 are plotted as circles. The su­
periority of the "self-consistent" equation 15 over 
equation 1, shown as a broken line, is evident. 

1.36 

1.30 — 

X 
Cl 

1.20 -

1.10 
0.10 

Fig. 1.—Diffusion coefficient of aqueous calcium chloride 
solutions at 25°: ©, experimental values (Harned and 
Levy)1; —, "self-consistent" equation 15; , Onsa-
ger-Fuoss equation 1. 

(c) Lanthanum Chloride: 
Zl = 3, S2 = _ i , t<( = 1 - t°2 = 0.477, A" = 145.9, A = 6.8 
Do = 1.294 X 10-*, c = 0.0334(Ka)2 

These values lead to the An values below 

Ka 

0.2 
.3 
.5 
.7 

1.0 

C 

0.00134 
.00301 
.00835 
.01637 
.0334 

A1 X 
10» 

- 0 . 0 2 4 
- .033 
- .048 
- .059 
- ,071 

A1 X 
10« 

+0 .049 
+ .074 
+ .112 
-f- .135 
+ .153 

Ai X 
10' 

- 0 . 0 4 8 
- .071 
- .099 
- .110 
- .110 

A< X 
10« 

+0.065 
+ .093 
+ .116 
+ .116 
+ .099 

As X 
10« 

- 0 . 0 7 3 
- .097 
- .107 
- .095 
- .072 

Here the non-convergence of the series 2A„ is, as 
expected, even more marked. The "self-consist­
ent" equation 15 is here less satisfactory, giving a 
curve lying well below the experimental results, 
while the Onsager-Fuoss equation 1 gives a curve 
lying above them. This is a different order-rela­
tion to that shown by calcium chloride (Fig. 1), 
and may perhaps indicate that some ion-pair for­
mation is occurring; this would have the effect of 

increasing the diffusion coefficient. Electrolytes of 
3:1 valency type are in any case difficult to deal 
with theoretically, but it is noteworthy that the ac­
tivity coefficient curve of lanthanum chloride10 at 
the concentrations considered here falls below that 
given by the Debye-Hiickel expression log y± = 

— z—i—z-z—F in which the factor 5.5 corresponds to 
1 + 5.5 Vc 

an ionic diameter of 6.8 A.; this also suggests that 
some ion-pair formation is occurring. 

There are of course many other assumptions and 
approximations inherent in the computation of the 
electrophoretic terms, whatever choice be made in 
terminating the expansion of the series in equation 
2: (a) Stokes' law is used in treating the motion of 
a series of shells proceeding outwards from the cen­
tral ion to infinity. These exist only as a time-av­
erage, and are a convenient mathematical fiction 
rather than a physical reality; furthermore when a 
different central ion is chosen it becomes impossible 
for any normal imagination to picture the resulting 
interpenetrating system of shells at all. In these 
circumstances it is difficult to make any analysis of 
the justification of using Stokes' law, and one must 
merely note that the resulting formulas do work, for 
1:1 electrolytes at least, (b) Other approxima­
tions made involve binomial expansions of the form 
1/(1 + x) « (1 — x); the quantities involved as x 
in these expansions are of the order of magnitude 
of A„/£>o, which the examples quoted show to be 
small enough to permit the neglect of their squares 
at the concentrations considered. The same 
applies to an approximation in which the "forces" 
acting on the diffusing ions are evaluated in terms 
of the velocities they have before the electrophoretic 
corrections are applied; since this assumption is 
made only for the purpose of calculating the elec­
trophoretic corrections themselves, it follows that 
the error it introduces will be of the second order. 

Conclusion.—Thus the present investigation has 
succeeded to the extent of: (a) demonstrating the 
theoretical adequacy and self-consistency of the 
Onsager-Fuoss equation 1 for 1:1 electrolytes; 
(b) showing that the same equation applied to 
unsymmetrical electrolytes is neither self-consistent 
nor convergent; and (c) showing that the "self-
consistent" equation 15, in which only the first-
order electrophoretic term is accepted, is satis­
factory in the case of calcium chloride. (Its failure 
for lanthanum chloride must however be attributed 
to ion-pair formation, for which there is other 
evidence.) 

I am indebted to Dr. J. N. Agar of the University 
of Cambridge for valuable discussions on the 
problem of self-consistency. 

NBDLANDS, WESTERN AUSTRALIA 

(10) T. Shedlovsky, T H I S JOURNAL, 72, 3680 (1950). 


